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Abstract

We provide a comprehensive study of the expected corporate bond returns in light of
machine learning methods and data mining bias using a large set of stock and bond char-
acteristics. We examine whether stock or bond characteristics, individually or jointly,
drive the expected corporate bond returns. Using either set of characteristics, we find
that machine learning methods substantially improve the out-of-sample predictive power
for bond returns, compared to the traditional unconstrained linear models. While stock
characteristics produce significant explanatory power for bond returns when used alone,
their predictive power is only half of that associated with using corporate bond char-
acteristics, and their incremental improvement relative to bond characteristics is small.
In addition, both stock and bond characteristics provide strong forecasting power for
future stock returns when used alone. However, corporate bond characteristics do not
offer additional explanatory above and beyond stock characteristics when we combine
both sets of characteristics.
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1 Introduction

Hundreds of stock characteristics have been presented as statistically significant predictors

of the cross-section of stock returns since 1970 (?). Since then, a few studies show that

the majority of the predictive power associated with these characteristics are mostly likely

an artifact of data snooping, especially when examined out-of-sample (?; ?; ?; ?). Despite

the out-of-sample and post-publication decline of a vast majority of stock characteristics (?),

recent studies show that machine learning methods are able to generate robust forecasting

power to predict stock returns in the cross-section and time series (?).

Despite the proliferation of stock characteristics or factors to explain the cross-section of

stock returns, however, far fewer studies are devoted to the expected corporate bond returns.

Debt financing forms a significant portion of firms’ capital structures, underscoring the need

to study the return predictors in corporate bond markets.1 Recent studies examine a few

corporate bond characteristics related to default and term betas (Fama and French, 1993;

Gebhardt, Hvidkjaer, and Swaminathan, 2005), liquidity risk (Lin, Wang, and Wu, 2011),

bond momentum (Jostova et al., 2013), downside risk and short-term reversal (?), which

exhibit significant explanatory power for the expected bond returns. Other papers investigate

whether a few stock characteristics impact the cross-section of corporate bond returns and

find mixed evidence on the predictability (Chordia et al., 2017; Choi and Kim, 2016).

In this paper, we provide a comprehensive study of the expected corporate bond returns

using a large set of stock and bond characteristics. We first build a comprehensive data library

of 41 corporate bond-level characteristics that are motivated by the existing studies on the

cross-section of corporate bond returns literature.2 We then combine them with the 94 stock

characteristics used in ? and ?. Our final sample of the 135 stock and bond-level charac-

1Graham et al. (2015) indicate that the average debt-to-assets ratio for public companies was as high as
35% in 2010.

2This list of a broad set of corporate bond characteristics is designed to be representative of (i) bond-level
characteristics such as issuance size, credit rating, time-to-maturity, and duration, (ii) proxies of risk such as
bond systematic risk, downside risk, and credit risk, (iii) proxies of bond-level illiquidity constructed using
daily and intraday transaction data and liquidity risk, (iv) past bond return characteristics such as bond
momentum and short-term reversal, and distributional characteristics such as return volatility. We present a
detail list of the bond characteristics in Section 3 and Appendix of the paper as well as the studies that we
follow closely to construct these measures.
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teristics cover both the equity and debt market, thus provide a wide range of predictors for

corporate bond returns. The benefit of using such an exhaustive list is that it avoids selection

biases, thereby reducing the data-snooping problem (Lo and MacKinlay, 1990; ?). Equity

and corporate bonds are contingent claims on firms, but also differ in several key features.

First and foremost, bondholders are more sensitive to downside risk compared to stockholders

(Hong and Sraer, 2013). Since the upside payoffs of corporate bonds are capped, corpo-

rate bond payoffs become concave in the investor beliefs about the underlying fundamentals,

whereas equity payoffs are linear in investor beliefs regarding fluctuations in the underlying

factors (?).3 Hence it is important to examine whether stock or bond characteristics, individ-

ually or jointly, drive the expected corporate bond returns. Because of the nonlinear payoffs

of corporate bonds and the high correlation between many of the stock and bond character-

istics, machine learning is well suited for such challenging prediction problems by reducing

degrees of freedom and condensing redundant variation among a large set of predictors, with

an emphasis on variable selection and dimension reduction techniques (?).

In light of machine learning methods and the data mining bias, in this article, we seek to

answer the following questions using the comprehensive list of the 135 stock and bond-level

predictive characteristics: Do corporate bond characteristics and stock characteristics, indi-

vidually or combined, predict the expected bond returns? Which set of characteristics plays

the major role in explaining the expected bond returns? Do stock characteristics improve

the predictive power of bond-level characteristics for bond returns? In addition to corporate

bond return predictability, we also investigate stock return predictability motivated by the

findings of ?. We further examine the predictive performance of stock and corporate bond

characteristics, respectively, in predicting future stock returns. We then investigate whether

corporate bond characteristics provide marginal improvement on the predictive power over

stock characteristics for future stock returns. Although many existing studies have examined

whether a large set of stock characteristics predict the cross-section of stock returns (?; ?), to

3In addition, the corporate bond market, due to its over-the-counter trading mechanism and other market
features, bears higher liquidity risk. Bond market participants are dominated by institutional investors such
as insurance companies, pension funds, and mutual funds who are long-term buy-and-hold investors (Source:
Financial Accounts of the United States, Release Z1, Table L.21). Thus liquidity in corporate bond market
is lower compared to the stock market in which active trading is partially attributable to the existence of
individual investors.
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the best of our knowledge, far fewer studies studies are devoted to study whether a compre-

hensive list of corporate bond characteristics provide forecasting power for the expected stock

returns.4

Following a variety of machine learning methods proposed by ?, we compare and evaluate

these approaches for the prediction of corporate bond returns based on their out-of-sample pre-

dictive performance. The machine learning methods include the dimension reduction models

(PCA and PLS), penalized methods (Lasso, Ridge, and Elastic Net), regression trees (Ran-

dom Forests), and neural networks including the feed forward neural networks (FFN). On top

of these methods, we also add a long-term memory neural network (LSTM) proposed in ? to

capture a long memory effect (?). Moreover, we also rely on the forecast combination method

(Combination) which averages individual expected return forecasts from the aforementioned

sophisticated machine learning models (?; ?).5 First, we show that traditional unconstrained

linear models such as OLS fail to deliver statistically significant out-of-sample forecasting pow-

er for the expected corporate bond returns. The OLS model with all 41 bond characteristics

produces a negative out-of-sample R-squared (R2
OS), whereas the machine learning models

substantially improve the predictive power with monthly R2
OS in the range of 2.45% to 4.40%.

In addition, the predictive power of machine learning models extends to both investment-

grade and non-investment-grade bonds, with the highest improvements for investment-grade

bonds which cover about 75% of the full sample. Using the ? test for differences in out-

of-sample predictive accuracy between two models, we find that all machine learning models

perform equally well and they significantly outperform the unconstrained OLS model. To

further investigate the economic significance of machine learning approaches, we form corpo-

rate bond portfolios based on machine learning forecasts using the 41 bond characteristics.

The machine learning bond portfolios are based on the one-month-ahead out-of-sample bond

returns, where the high minus low portfolio corresponds to the long short portfolio that buys

the highest expected return bonds (decile 10) and sells the lowest (decile 1). We find that all

machine learning forecasts generate economically and statistically significant return spreads

4This is partly because of the dearth of high-quality corporate bond data required to construct bond
returns and a large set of bond characteristics, and the complex features of corporate bonds such as optionality,
seniority, changing maturity, and risk exposure to a number of financial and macroeconomic factors.

5We describe the machine learning methods used in our analysis in detail in Section 2.
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between high and low bond portfolios, in the range of 0.58% to 1.20% per month, compared

to the unconstrained OLS model which delivers the smallest monthly return spread of 0.47%.

We proceed to identify corporate bond characteristics that are important for the expected

bond returns while simultaneously controlling for the many other predictors. Following the

ranking and variable importance approach in ? and ?, we discover influential covariates by

measuring the reduction in panel prediction R2
OS, while holding the remaining model estimates

fixed. This approach allows us to investigate the relative importance of individual bond

characteristics for the performance of each machine learning model. Our results demonstrate

that all machine learning models are generally in close agreement regarding the most influential

bond-level characteristics, which can be classified into four categories in general (i) bond

characteristics related to interest rate risk such as duration and time-to-maturity, (ii) risk

measures such as downside risk proxied by Value-at-Risk (VaR) or expected shortfall (ES),

total return volatility (VOL), and systematic risk related to bond market beta, default and

term beta, (iii) bond-level illiquidity measures such as average bid and ask price (AvgBidAsk),

and Amihud or Roll’s measures of illiquidity, and (iv) bond return characteristics related to

bond momentum and short-term reversal.

Second, we examine whether a comprehensive list of stock characteristics provide fore-

casting power for the expected corporate bond returns. Recent studies often draw from the

well of cross-sectional predictors on a few stock characteristics and find mixed evidence of

predictability (Chordia et al., 2017; Choi and Kim, 2016). Compared to these studies, we

extend the candidates to a much larger set of stock characteristics and more importantly;

we rely on machine learning methods to reduce redundant variation among predictors that

address overfitting bias. We show that all machine learning models substantially improve the

forecasting power of stock characteristics for the expected bond returns compared to the OLS

model, for all sample of bonds.6 Interestingly, the predictive performance is higher for non-

investment-grade bonds than investment-grade bonds, for all machine learning methods using

the 94 stock characteristics. However, the marginal improvement of forecasting performance

6The machine learning models using stock characteristics deliver an R2
OS in the range of 0.34% to 2.75%

per month, which is about half of the monthly R2
OS associated with using bond characteristics, which ranges

from 2.45% to 4.40%. These results indicate that corporate bond characteristics have about twice as much
predictive power for bond returns than stock characteristics.
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of stock characteristics relative to bond characteristics is small, as the Diebond-Mariano test

statistics indicate that there is no difference in the performance of machine learning models

when adding stock characteristics to the bond characteristics in forecasting bond returns.

? show that machine learning offers an improved description of expected return relative

to traditional methods in forecasting future stock returns. Motivated by the findings of ?,

we examine the predictive performance of the 94 stock and 41 bond characteristics, respec-

tively, in predicting future stock returns. Consistent with the findings in ?, we show that

machine learning methods provide strong forecasting power for future stock returns using the

94 stock characteristics. Moreover, we uncover new evidence that when used alone in the ma-

chine learning models, corporate bond characteristics perform well in predicting future stock

returns, with out-of-sample R-squared ranging from 0.11% to 0.44% per month. However,

when comparing the marginal improvement in the predictive performance, we find that cor-

porate bond characteristics do not offer additional explanatory power above and beyond stock

characteristics.

This paper proceeds as follows. Section 2 describes the machine learning methods used in

the paper and the performance metrics used to assess the predictive performance for individ-

ual bond return forecasts. Section 3 describes the data and variables used in our empirical

analyses. Section 4 investigates the forecasting performance of a variety of bond and stock

characteristics, individually or jointly, for the expected bond returns. Section 5 examines

whether stock or bond characteristics are significant predictors for the expected stock returns.

Section 6 concludes the paper.

2 Methodology

In this section, we describe a variety of machine learning methods used in our analysis. These

candidate models are examined in measuring equity risk premia in ?, including generalized

linear models with penalization, dimension reduction via principal components regression

(PCR) and partial least squares (PLS), regression trees, random forests, and neural networks.
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Following ?, we write the excess return of asset i (either a corporate bond or stock) as

ri,t+1 = Et(ri,t+1) + εi,t+1, (1)

where

Et(ri,t+1) = g∗(zi,t) (2)

is the expected return at time t and a flexible function of asset i’s P -dimensional characteris-

tics, i.e, zi,t = (zi,1,t, · · · , zi,P,t)′. For ease of exposition, we assume a balanced panel of assets’

returns in this section and discuss the missing data issues in Section 3; we index assets by

i = 1, · · · , N and months by t = 1, · · · , T , where N is the number of assets at time t.

2.1 Linear Regression

The linear prediction regression is perhaps the least complex but most used method in the

literature, which assumes that g∗(·) can be approximated by a linear function as

g(zi,t; θ) = z′i,tθ, (3)

where θ = (θ1, · · · , θP )′ can be estimated by the ordinary least squares (OLS) via the following

optimization problem:

min
θ
L(θ) ≡ 1

NT

N∑
t=1

T∑
t=1

(ri,t+1 − g (zi,t; θ))
2 . (4)

Based on ?, the estimate of θ in (4) is unbiased and efficient if P is relatively small while

T is relatively large. In the real world, unfortunately, P is usually comparable with, or even

larger than, T , which raises an overfitting issue and makes the OLS estimate inefficient or

even inconsistent. To deal with large P , in the following we introduce nine representative

machine learning methods that have been recently used in the finance literature.
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2.2 Penalized Linear: LASSO, Ridge and Elastic Net

A most common method for reducing the overfitting issue in (4) is to add a penalty term to

the objective function. The penalty is imposed to tradeoff between mechanically deteriorating

a model’s in-sample performance and improving its stability out-of-sample. Instead of (4), θ

can be estimated via

min
θ
L(θ; .) ≡ L(θ) + φ(θ; .), (5)

where φ(θ; .) is the penalty on θ. Depending on the functional form of φ(θ; .), the estimates

of some elements of θ can be regularized and shrunk towards zero.

Specifically, in the machine learning literature, a general penalty function is

φ(θ;λ, ρ) = λ(1− ρ)
P∑
j=1

|θj|+
1

2
λρ

P∑
j=1

θ2
j , (6)

where λ > 0 is a hyperparameter congrolling for the amount of shrinkage; the larger the value

of λ, the greater the amount of shrinkage. the estimate in (5) reduces to the OLS estimate if

λ = 0. When ρ = 0, (5) corresponds to LASSO, which sets a subset of θ to exactly zero. In

this sense, the LASSO is a sparsity modelling technique and can be used for variable selection.

When ρ = 1, (5) corresponds to the Ridge regression, which shrinks all coefficient estimates

closer to zero but does not impose exact zeros anywhere. In this sense, ridge regression is a

dense modeling technique and prevents coefficients from becoming unduly large in magnitude.

Finally, if ρ has a value between 0 and 1, we have the “elastic net” penalty, representing a

compromise between the Ridge and LASSO. Inheriting from ridge regression, one advantage

of elastic net is that it can handle highly-correlated characteristics (?).

2.3 Dimension Reduction: PCA and PLS

Based on equations (1)–(3), the excess return can be rewritten as

ri,t+1 = z′i,tθ + εi,t+1. (7)
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With matrix notations, we have

R = Zθ + E, (8)

where R is the NT × 1 vector of ri,t+1, Z is the NT ×P matrix of stacked predictors zi,t, and

E is an NT × 1 vector of residuals εi,t+1.

Since P is relatively large, dimension reduction is an efficient way to attenuate over-fitting

by projecting a large number of characteristics into a small number of factors. Two main

dimension reduction techniques are principal components analysis (PCA) and partial least

squares (PLS). Specifically, PCA requires a transformation of a set of asset characteristics

into independent principal components, so that the first one has the largest variance, the

second one has the second largest, and so on. Then, it uses a few leading components to

represent all the asset characteristics and to predict asset returns. Mathematically, the jth

principal component, Zwj, can be solved as:

wj = argmaxwVar (Zw) , s.t. w′jwj = 1, Cov (Zw,Zwl) = 0, l = 1, 2, · · · , j − 1. (9)

From (9), it is apparent that PCA is to maximize the common variation across all the

characteristics and its first K principal components represent the best variables that explain

the variations of the P characteristics. However, there is no guarantee that they are close

the best variables that predict the future asset returns. Indeed, this is not surprising since no

information about asset returns is used in finding the PCA predictors. In the worst case, if

an individual characteristic has the largest variance and little ability to predict asset returns,

it will be very likely chosen as the first predictor as long as it is uncorrelated with the other

characteristics. Of course, this may not happen in the real data like our setting in the bond

market, but it seems true in the stock market (?).

In contrast to PCA, PLS is to link the asset characteristics to the asset returns. In our

context, it searches K linear combinations of Z to maximize its covariance with R. The
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Figure 1. Regression tree example

This figure presents the diagram of a regression tree in the space of two predictors (rating and
maturity), based on which, the sample of individual bonds is divided into three categories.

Rating<10

Maturity<1 Category 3

Category 1 Category 2

False

False

True

True

weights used to construct jth PLS component solve for

wj = argmaxw Cov2(R,Zw), s.t. w′w = 1, Cov (Zw,Zwj) = 0, l = 1, 2, · · · , j − 1. (10)

2.4 Random Forests

Unlike linear models, random forecasts are fully nonparametric and have different logic from

traditional regressions. A tree “grows” in a sequence of steps. At each step, a new “branch”

separates the data based on one of the predictor variables. The final outputs are the average

values of returns in each partition sliced by predictors. Figure 1 shows an example with two

predictors, “Rating” and “Maturity”. The tree separates to a partition based on characteristic

values. First, observations are sorted on Rating. Those above the breakpoint of 10 are assigned

to Category 3. Those with small Rating values(investment bonds) are then further sorted by

Maturity. Bonds with lower than one year maturity are assigned to Category 1, while the rest

go into Category 2.

Mathematically, we can express the expected return approximation function as

g(zi,t; θ,K, L) =
K∑
k=1

θk1{zi,t∈Ck(L)}, (11)
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where K is the number of “leaves” (terminal nodes), and L is the depth, Ck(L) is one of the K

partitions of the data, 1{}̇ is an indicator function, and θk is defined to be the sample average

of outcomes within the partition. The prediction equation in Figure 1 is

g (zi,t; θ, 3, 2) = θ11{ratingi,t<10}1{maturity<1}+θ21{ratingi,t<10}1{maturity≥1}+θ31{ratingi,t≥10}. (12)

To estimate θ in (11), we follow the algorithm of ?. At each new level, we choose one

variable from the set of predictors and the split value to maximize the discrepancy which we

call it “impurity” among the average outcome returns in each bin. Single tree is facing over

fitting problems in prediction, so it’s rarely used without some regulation methods. In our

analysis, we build a set of decorrelated trees which are estimated separately and then averaged

out as a “ensemble” tree. Such modeling framework is known as “random forests”, which is

a general procedure known as “bagging” (?). Through averaging outcomes, random forests

can reduce the overfit in individual bootstrap samples, and make the predictive performance

more stable.

2.5 Feed-Forward Neural Network

As a typical neural network, feed-forward neural networks (FFN) include an “input layer”

of raw predictors, one or more “hidden layers” that interact and nonlinearly transform the

predictors, and an “output layer” that aggregates hidden layers into outcome prediction. The

information flows from input layer to hidden layers, finally output at the output layer. The

model becomes more flexible by adding hidden layers between the inputs and output. Each

hidden layer takes the output from the previous layer and transforms it into an output as:

z
(l)
K = g(bl−1 + z(l−1)

′

W (l−1)), (13)

where g(·) is the nonlinear “activation function” to its aggregated signal before sending its

output to the next layer. The final output is

G(z, b,W ) = bL−1 + z(L−1)
′

W (L−1), (14)
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Figure 2. Feed-forward neural network with three hidden layer

z1,t

z2,t

z3,t

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

r̂t+1

Output
layer

where is the linearly form drawing information from the last hidden layer output.

There are many choices for the nonlinear activation functions, and we adopt the most

commonly used rectified linear unit(ReLU), which is defined as:

ReLU(zk) = max(zk, 0). (15)

In this article, we apply one hidden layer for FFN, considering better performance about

shallow learning from ?.

2.6 Long Short-Term Memory Neural Network

In financial markets, many predictors have long-term effects on stock returns. For example,

return volatility is known to have a long memory effect (see, e.g., ?), and using only one lag

of volatility for predicting returns is unlikely to fully capture the volatility forecasting power.

To deal with this type of long-term dependencies, we use a more complex LSTM model (?),

which transform a sequence of input variables to another output sequence, with the same set

of parameters at each step.

Specifically, the LSTM model takes the current input variable zt and the previous hidden
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state ht−1 and performs a non-linear transformation to get the current state ht

ht = g
(
W

(c)
h ht−1 +W (c)

z zt + w
(c)
0

)
. (16)

This type of structure is powerful if only the immediate past is relevant, but is not suited if

the time series dynamics are driven by events that are further back in the past. We can think

of an LSTM as a flexible hidden state space model for a large dimensional system. The LSTM

is composed of a cell (the memory part of the LSTM unit) and three “regulators” of the flow

of information inside the LSTM unit: an input gate, a forget gate, and an output gate.

The memory cell is created with current input zt and previous hidden state ht−1

c̃t = tanh
(
W

(c)
h ht−1 +W (c)

z zt + w
(c)
0

)
. (17)

The input and forget gates control for the memory cell, and the output gate controls for the

amount of information stored in the hidden state:

inputt = g
(
W

(i)
h ht−1 +W (i)

z zt + w
(i)
0

)
,

forgett = g
(
W

(f)
h ht−1 +W (f)

z zt + w
(f)
0

)
, (18)

outt = g
(
W

(o)
h ht−1 +W (o)

z zt + w
(o)
0

)
.

Define the element-wise product by �, the final memory cell and hidden state are given

by

ct = forgett � ct−1 + inputt � c̃t (19)

ht = outt � tanh(ct)

Figure 3 presents the diagram of a long short-term memory network. We consider one hidden

layer LSTM method for our model comparison.
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Figure 3. Long Short-Term Memory Networks
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+
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2.7 Forecast Combination

Let r̂
(m)
i,t+1 be asset i’s expected return estimated with method m (m = 1, · · · ,M) and M = 8

be the number of methods, consisting of PCA, PLS, LASSO, Ridge, Enet, RF, FFN, LSTM.

We equally combine r̂
(m)
i,t+1 to obtain a new prediction of expected return,

r̂i,t+1 =
1

M

M∑
m=1

r̂
(m)
i,t+1. (20)

The idea behind is that the r̂
(m)
i,t+1 may have high variances, equally weighting them can reduce

the variance dramatically, although it may increase the bias to some extent. The financial

literature, such as ? and ?, shows that this method works well for return predictability.
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2.8 Performance Evaluation

Following ?, we use the out-of-sample R-square as the performance metric to assess the pre-

dictive performance for individual excess bond return forecasts,

R2
OS = 1−

∑
(i,t)∈T3 (ri,t+1 − r̂i,t+1)2∑

(i,t)∈T3 r
2
i,t+1

. (21)

The R2
OS statistic pools prediction errors across firms and over time into a grand panel-level

assessment of each model, and it measures the proportional reduction in mean squared forecast

error (MSFE) for each model relative to a naive forecast of zero benchmark. To estimate the

out-of-sample R2
OS, we follow ? and the most common approach in the literature and divide

our full sample (July 2002 to December 2017) into three disjoint time periods, i) the first

three years of “training” or “estimation” period, T1, ii) the second two years of “validation”

for tuning the hyperparameters, T2, and iii) the rest of the sample as the “test” period, T3, to

evaluate a model’s predictive performance, which represents the truly out-of-sample evaluation

of the performance.

We use the mean squared forecast error (MSFE)-adjusted statistic of ? to test the statisti-

cal significance of R2
OS. Considering the potentially strong cross-sectional dependence among

individual excess bond returns, following ?, we employ the modified MSFE-adjusted statistic

based on the cross-sectional average of prediction errors from each model instead of predic-

tion errors among individual returns. ? show that this test has an asymptotically standard

normal distribution when comparing forecasts even from nested models. The p-value from the

MSFE-adjusted statistic tests the null hypothesis that the MSFE of a naive forecast of zero is

less than or equal to the MSFE of a machine learning model against the one-sided (upper-tail)

alternative hypothesis that the MSFE of a naive forecast of zero is greater than the MSFE of

a machine learning model (H0: R2
OS ≤ 0 against HA : R2

OS > 0).

To compare the out-of-sample predictive accuracies between two methods, we follow ? and

use the modified ? test, which takes into account of the potentially strong cross-sectional de-

pendence among individual returns. Specifically, to compare the predictive powers of methods

14



(1) and (2), we define the modified Diebold-Mariano statistic as

DM12 = d̄12/σ̂d̄, (22)

where d̄12 and σ̂d̄ are the time-series mean and Newey-West standard error of d12,t+1 over the

testing sample. d12,t+1 is the forecast error differential between the two methods, calculated

as the cross-sectional average of forecast error differentials from each model over each period

t+ 1,

d12,t+1 =
1

n3,t+1

n3∑
i=1

((
ê

(1)
i,t+1

)2−
(
ê

(2)
i,t+1

)2
)
, (23)

where ê
(1)
i,t+1 and ê

(2)
i,t+1 are the return forecast errors of individual asset i at time t + 1 using

each method, and n3,t+1 is the number of assets in the testing sample.

3 Data and Variable Definitions

This section first describes the data and key variables used in our empirical analyses and

then provides a summary for the large set of corporate bond characteristics we construct.

Following Bessembinder, Maxwell, and Venkataraman (2006), who highlight the importance

of using TRACE transaction data, we rely on the transaction records reported in the enhanced

version of TRACE for the sample period from July 2002 to December 2017. The TRACE

dataset offers the best-quality corporate bond transactions, with intraday observations on

price, trading volume, and buy and sell indicators.7 We then merge corporate bond pricing

data with the Mergent fixed income securities database to obtain bond characteristics such

as offering amount, offering date, maturity date, coupon rate, coupon type, interest payment

frequency, bond type, bond rating, bond option features, and issuer information.

For TRACE data, we adopt the filtering criteria proposed by ?. Specifically, we re-

7We use enhanced TRACE compared to the widely employed standard TRACE since it contains uncapped
transaction volumes and information on whether the trade is a buy, a sell, or an interdealer transaction,
in addition tothe information contained in standard TRACE. The improvement of enhanced TRACE over
standard TRACE thus allows us to construct a variety measures of bond liquidity using daily and intraday
transaction data.
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move bonds that (i) are not listed or traded in the U.S. public market; (ii) are structured

notes, mortgage-backed, asset-backed, agency-backed, or equity-linked; (iii) are convertible;

(iv) trade under $5 or above $1,000; (v) have floating coupon rates; and (vi) have less than

one year to maturity. For intraday data, we also eliminate bond transactions that (vii) are

labeled as when-issued, locked-in, or have special sales conditions; (viii) are canceled, (ix)

have more than a two-day settlement, and (x) have a trading volume smaller than $10,000.

3.1 Corporate Bond Return

The monthly corporate bond return at time t is computed as

Ri,t =
Pi,t + AIi,t + Ci,t
Pi,t−1 + AIi,t−1

− 1. (24)

where Pi,t is the transaction price, AIi,t is accrued interest, and Ci,t is the coupon payment,

if any, of bond i in month t. We denote ri,t as bond i’s excess return, ri,t = Ri,t − rf,t, where

rf,t is the risk-free rate proxied by the one-month Treasury bill rate.

With the TRACE intraday data, we first calculate the daily clean price as the trading

volume-weighted average of intraday prices to minimize the effect of bid-ask spreads in prices,

following Bessembinder, Kahle, Maxwell, and Xu (2009). We then convert the bond prices

from daily to monthly frequency following ?, who discuss the conversion methods in detail.

Specifically, our method identifies two scenarios for a return to be realized at the end of month

t: (i) from the end of month t− 1 to the end of month t, and (ii) from the beginning of month

t to the end of month t. We calculate monthly returns for both scenarios, where the end

(beginning) of the month refers to the last (first) five trading days within each month. If

there are multiple trading records in the five-day window, the one closest to the last trading

day of the month is selected. If a monthly return can be realized in more than one scenario,

the realized return in the first scenario (from month-end t− 1 to month-end t) is selected.
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3.2 Corporate Bond Characteristics and Stock Characteristics

We first build a comprehensive data library of 41 corporate bond characteristics that are mo-

tivated by the existing studies on the cross-section of corporate bond returns literature. This

broad set of bond characteristics can be largely classified into (i) bond-level characteristics

such as issuance size, age, credit rating, time-to-maturity, and duration, (ii) proxies of corpo-

rate bond downside risk, (iii) proxies of bond-level illiquidity and liquidity risk, (iv) proxies of

systematic risk such as default and term betas and volatility betas, and (v) past bond return

characteristics such as bond momentum, short-term reversal, and distributional characteris-

tics including return volatility, skewness, and kurtosis. Appendix of the paper gives a detailed

list of the 41 bond characteristics as well as the studies that we follow closely to construct

these measures. This list of corporate bond characteristics is not an exhaustive analysis of all

possible predictors of corporate bond returns. Nonetheless, our list is designed to be repre-

sentative of a broad set of corporate bond characteristics motivated in the literature for their

explanatory power for bond returns.

Since we also investigate the predictive power of stock and bond characteristics for future

stock returns, we obtain monthly individual common equity returns from CRSP for all firms

listed in the NYSE, AMEX, and NASDAQ. We also obtain the one-month Treasury bill rate to

calculate stock excess returns. We rely on a large set of 94 stock-level predictive characteristics

based on ?.8 We restrain our stock sample to begin from July 2002 and ends in December

2017 because we focus on the common sample period when our bond return and characteristics

construction become available in TRACE which starts in July 2002.

Our final sample includes 22,941 bonds issued by 6,051 unique firms, yielding a total

of 1,197,702 bond-month return observations during the sample period from July 2002 to

December 2017. Panel A of Table 1 reports the time-series average of the cross-sectional bond

returns’ distribution and bond characteristics. The sample contains bonds with an average

rating of 8.36 (i.e., BBB+), an average issue size of $443 million, and an average time-to-

maturity of 9.83 years. Among the full sample of bonds, about 75% are investment-grade and

the remaining 25% are high-yield bonds. Panel B of Table 1 presents the correlation matrix

8Details on each of the 94 firm characteristics can be found in the Appendix in ? and Table A.6 in ?.
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for the bond-level characteristics and several risk measures. As shown in Panel B, downside

risk (i.e., proxied by the 5% Value-at-Risk) is positively associated with bond market beta

(βBond), illiquidity, and rating, with respective correlations of 0.38, 0.32, and 0.46. The bond

market beta, βBond, is also positively associated with rating and illiquidity, with respective

correlations of 0.08 and 0.09. Bond maturity and duration are positively correlated with all

risk measures, implying that bonds with longer maturity or duration (i.e., higher interest rate

risk) have higher βBond, higher VaR, and higher ILLIQ. Bond size is negatively correlated with

VaR and ILLIQ, indicating that bonds with smaller size have higher VaR and higher ILLIQ.

The correlations between size and rating and between size and maturity are economically

weak.

4 Corporate Bond Characteristics, Stock Characteris-

tics, and the Expected Bond Returns

4.1 Out-of-sample Performance Using Bond Characteristics

Following ?, we compare and evaluate a variety of machine learning methods including OLS

with all covariates, principal component analysis (PCA), partial least square (PLS), LAS-

SO, ridge regression (Ridge), elastic net (ENet), random forest (RF), and feedforward neural

network (FFN). On top of these methods, we also add a long-term memory neural network

(LSTM) to capture a long memory effect (?; ?). Moreover, we rely on the forecast combi-

nation method (Combination) which averages individual expected return forecasts from the

aforementioned eight machine learning models (?; ?). The comparison of different machine

learning techniques is based on their out-of-sample predictive performance.

Table 2 presents the monthly out-of-sample R-squared (R2
OS, in percentage) for the entire

pooled sample of corporate bonds using all 41 bond characteristics listed in the Appendix as

the covariates. The first row of Table 2 reports R2
OS for the entire sample of corporate bonds.

The first row shows that the OLS model with all 41 bond characteristics produces an R2
OS

of −6.76%, indicating that the model fails to deliver statistically significant out-of-sample
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forecasting power for the expected corporate bond returns. However, the other columns of

Table 2 show that machine learning models substantially improve the R2
OS. For example, by

forming a few linear combinations of predictors via dimension reduction, columns (2) and

(3) of Table 2 show that PCA and PLS improve the R2
OS to 3.26% and 3.13% per month,

respectively. By introducing the penalized methods into the loss function, columns (4) to (6)

show that LASSO, Ridge, and ENet approach improve the R2
OS to 2.45%, 2.77%, and 2.90%

per month, respectively.

Unlike the linear models in column (1), regression trees are fully nonparametric and can

reduce overfitting in individual bootstrap samples, and make the predictive performance more

stable. Consistent with this prediction, column (7) of Table 2 shows a significant increase in

R2
OS to 3.88% per month using random forests (RF). In addition to nonparametric regressions,

we also investigate the performance of different neural network models including the feed

forward neural networks (FFN) and the long short-term memory neural network (LSTM). As

a typical neural network, feed forward neural networks (FFN) produces more flexible predictive

power by adding hidden layers between the inputs and output layer that aggregates hidden

layers into the outcome prediction. The long short-term memory neural network (LSTM)

captures long-term dependencies as a flexible hidden state space model for a large dimensional

system. Columns (8) and (9) show that the FFN and LSTM model produce a significant R2
OS

of 4.40% and 3.82% per month, respectively. Finally, the last column of Table 2 shows that

the forecast combination model (Combination) significantly improves the R2
OS to 4.05% per

month.

In addition to the full sample of bonds, we also examine the predictive performance of

different models for investment-grade and non-investment-grade bonds, respectively, in the

second and third row of Table 2. We obtain similar patterns in R2
OS for investment-grade

and non-investment-grade bonds for all machine learning models. Specifically, linear models

such as OLS perform poorly, with R2
OS −5.23% for investment-grade bonds and even worse

for non-investment-grade bonds at −12.38% per month, whereas all of the machine learning

models deliver significantly positive R2
OS. The predictive power of machine learning models is

higher for investment-grade bonds, with R2
OS in the range of 3.15% (LASSO) to 4.81% (FFN),

than for non-investment-grade bonds, whose R2
OS range from 0.01% (Ridge) and 2.94% (FFN).
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Finally, we plot the monthly R2
OS (y-axis) for all bonds, investment-grade, and non-investment-

grade bonds in Panel A of Fig. 4, which clearly highlights the superior performance of machine

learning methods to the linear OLS models.

To make pairwise comparisons of methods, we use the ? test for differences in out-of-

sample predictive accuracy between two models. Table 3 reports the Diebold-Mariano test

statistics for pairwise comparisons of a column model versus a row model. A positive statistic

indicates that the column model outperforms the row model. The first row of Table 3 shows

a positive and statistically significant test statistic for all the machine learning models, in the

range of 3.73 to 4.96, compared to the unconstrained OLS model. First, the dimension reduc-

tion models such as PCA and PLS, the penalized methods using LASSO, Ridge, and ENet

approaches, and the neural network models including RF and LSTM – produce statistically

significant improvements over the unconstrained OLS model. Second, there is little differ-

ence in the performance of dimension reduction methods (PCA and PLS), penalized linear

methods (LASSO, Ridge, ENet, and RF), and neural networks (FFN and LSTM), as the test

statistics are not significant. Finally, the last column of Table 3 shows that the forecast com-

bination model (Combination) produces large and significant statistical improvements over

most individual machine learning models.

4.2 Which Bond Characteristics Matter?

In this section, we aim to identify corporate bond characteristics that are important for

the expected bond returns while simultaneously controlling for the many other predictors.

Following the ranking approach in ? and ?, we discover influential covariates from setting all

values of predictor j to zero, while holding the remaining model estimates fixed. The variable

importance of the jth input variable is measured by the reduction in panel prediction R2
OS,

which allows us to investigate the relative importance of individual bond characteristics for the

performance of each machine learning model. To begin, for each of the nine machine learning

methods, we calculate the reduction in R2
OS from setting all values of a given predictor to

zero within each training sample, and average these into a single importance measure for each

predictor. Fig. 5 reports the resulting importances of the top 10 bond-level characteristics for
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each method, whereas Fig. 6 reports overall rankings of characteristics for all models.9

Figures 5 and 6 demonstrate that all machine learning models are generally in close agree-

ment regarding the most influential bond-level characteristics, which can be classified into four

categories (i) bond characteristics related to interest rate risk such as duration (DUR) and

time-to-maturity (MAT), (ii) risk measures such as downside risk proxied by Value-at-Risk

(VaR) or expected shortfall (ES), total return volatility (VOL), and systematic risk related to

bond market beta, default and term beta (βBond, βDEF , and βTERM), (iii) bond-level illiquid-

ity measures such as average bid and ask price (AvgBidAsk), and Amihud or Roll’s measures

of illiquidity, (iv) bond return characteristics related to bond momentum (MOM) and short-

term reversal (REV). Fig. 5 shows that risk measures play important role in the dimension

reduction methods (PCA and PLS), whereas bond-level characteristics related to interest rate

risk are more prominent in the penalized methods (Lasso, Ridge, and Enet). Regression trees

such as random forest model rely more heavily on bond-level illiquidity measures such as av-

erage bid and ask price and the Amihud measure. Neural networks such as FFN and LSTM

draw predictive information mainly from bond return characteristics such as bond momentum

and short-term reversal. Finally, the forecast combination model shows that bond momentum

(MOM), return volatility (VOL), and illiquidity (ILLIQ) are the top important covariates for

the predictive performance.

4.3 Machine Learning Portfolios Using Bond Characteristics

To further investigate the economic significance of machine learning approaches, we form

portfolios based on machine learning forecasts using the 41 bond characteristics. At the

end of each month, we calculate one-month-ahead out-of-sample bond return predictions for

each of the ten methods. We then sort bonds into deciles based on each model’s forecasts

and construct the equal-weighted portfolio based on the out-of-sample forecasts.10 “Low”

9The color gradient within each column in Fig. 6 shows the model-specific ranking of characteristics, where
the lightest (darkest) presents the least (most) important bond characteristics within each model.

10We first report results using the equal-weighted portfolio because our statistical objective functions min-
imize equally weighted forecast errors. To mitigate the concern of size and illiquidity driven by small bonds,
Table A.XX of the online appendix also reports the value-weighted portfolio results using amount outstanding
as weights. Our results remain similar.
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corresponds to the portfolio with the lowest expected return (decile 1), “High” corresponds

to the portfolio with the highest expected return (decile 10), and “High − Low” corresponds

to the long short portfolio that buys the highest expected return bonds (decile 10) and sells

the lowest (decile 1). The returns are in monthly percentage and Newey-West t-statistics are

reported in the last column.

Table 4 reports the monthly performance results. Panel A shows the results for all sam-

ple of bonds. Consistent with our earlier findings using the out-of-sample R-squared as the

performance metrics, Panel A of Table 4 shows that all machine learning forecasts generate

economically and statistically significant return spreads between High and Low bond portfo-

lios, in the range of 0.58% to 1.20% per month, compared to the unconstrained OLS model

which delivers the smallest return spread of 0.47%. The top two best high minus low strat-

egy come from the forecast combination model (Combination) and the feed forward neural

networks (FFN), with monthly return spread of 1.20% and 0.98%, respectively.

Next, we examine the performance of machine learning bond portfolios for investment-

grade and non-investment-grade bonds, respectively, in Panels B and C of Table 4. Panel B

shows that the High minus Low return spreads remain similar for investment-grade bonds,

in the range of 0.58% and 1.20% per month. The largest improvement of machine learning

portfolios are presented in Panel C for non-investment-grade bonds. The first row of Panel C

shows an economically small return spread of 0.11% using the unconstrained OLS forecasts,

indicating that linear model such as OLS fail to capture the nonlinear payoffs of corporate

bonds which is more pronounced among the non-investment-grade group. However, the return

spreads associated with the nine machine learning models are economically large ranging from

0.25% to 1.13%. Overall, Table 4 shows that machine learning approaches significantly improve

the forecast performance for bond portfolios using bond characteristics as the covariates.

4.4 Out-of-sample Performance Using Stock Characteristics

Equity and corporate bonds are contingent claims on firm fundamentals but also differ in

several key features such as the payoff structure. Motivated by this observation, a few studies

investigate whether a variety of stock characteristics impact corporate bond returns using
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cross-sectional Fama-MacBeth regressions (Chordia et al., 2017; Choi and Kim, 2016). These

studies find mixed evidence on the role of stock characteristics for the expected bond returns.11

Compared to these studies which draw from the well of a few predictors, we extend the list

of candidate to a much larger set of stock characteristics and more importantly; we rely

on machine learning methods to reduce redundant variation among predictors that address

overfitting bias.

Table 5 presents the monthly out-of-sample R-squared (R2
OS, in percentage) for the entire

pooled sample of corporate bonds using all 94 firm and stock characteristics from ? and ? as

the covariates. The first row of Table 5 shows that the OLS model with all 94 stock charac-

teristics produces an R2
OS of −2.35%, indicating that the model fails to deliver statistically

significant out-of-sample forecasting power for the expected corporate bond returns. Howev-

er, the other columns of Table 5 show that machine learning models substantially improve

the R2
OS. The penalized methods approach (LASSO, Ridge, and ENet) generate an R2

OS of

2.45%, 2.55%, and 2.46% per month, respectively, higher than those delivered by the dimen-

sion reduction approach (PCA an PLS). Neural networks such as FFN and LSTM deliver

significantly positive performance and improve the R2
OS to 0.34% and 1.61%, respectively.

Panel B of Fig. 4 plots the monthly R2
OS associated with stock characteristics and shows that

the R2
OS is in the range of 0.34% to 2.75%, which is about half of those generated by using

corporate bond characteristics in Panel A of Fig. 4.

Next, we examine the predictive performance of different models for investment-grade and

non-investment-grade bonds, respectively, using the 94 stock characteristics. The numbers in

Panels B and C of Table 5 show similar pattern to those in Panel A for all bonds. Specifically,

linear models such as OLS perform poorly, with R2
OS −2.34% for investment-grade bonds

and −2.35% for non-investment-grade bonds, whereas all machine learning models deliver

significantly positive R2
OS. Interestingly, for each machine learning method, the predictive

performance is higher for non-investment-grade bonds in Panel C, with R2
OS in the range of

11For example, Chordia et al. (2017) find that many equity characteristics, such as accruals, standardized
unexpected earnings, and idiosyncratic volatility, do not impact bond returns, whereas profitability and asset
growth are negatively related to corporate bond returns. In contrast, Choi and Kim (2016) find that some
variables (e.g., profitability and net issuance) fail to explain bond returns, and for others (e.g., investment
and momentum) bond return premia are too large compared with their loadings, or hedge ratios, on equity
returns of the same firms.
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0.36% (FFN) and 3.22% (Combination), than for investment-grade bonds in Panel B, whose

R2
OS range from 0.22% (FFN) and 2.61% (Combination).

4.5 Do Stock Characteristics Improve the Predictive Power of Bond

Characteristics for Bond Returns?

Our previous sections investigate the performance of machine learning approaches using the

41 bond characteristics and 94 stock characteristics separately. The results so far suggest that

all machine learning models produce significantly positive predictive power using either set of

characteristics, although the predictive performance associated with using bond characteristics

is twice as strong as using stock characteristics. In this section, we answer the question on

whether stock characteristics provide incremental predictive power for the expected bond

returns relative to bond characteristics.

Table 6 reports R2
OS combining the 41 bond characteristics and 94 stock characteristics

(i.e., 135 characteristics in total). Consistent with our previous findings, the unconstrained

OLS model produces R2
OS of −3.72%, indicating that the model fails to deliver statistically

significant out-of-sample forecasting power for the expected corporate bond returns. The other

columns of Table 6 show that machine learning models using the combined 135 characteristics

deliver significantly positive R2
OS ranging from 1.69% to 3.67%. The results remain similar

when we investigate investment-grade and non-investment-grade bonds, respectively.

To evaluate the marginal improvement in predictive performance, Panel B of Table 6 re-

ports the Diebold-Mariano test statistics for pairwise comparisons of a column model versus

a row model, where the column model uses the combined 135 stock plus bond characteristics

and the row model uses only the 41 bond characteristics. A significantly positive statistic

indicates that stock characteristics improve the predictive power of bond characteristics in

forecasting expected bond returns. However, Panel B of Table 6 shows that none of the test

statistics is significantly positive, indicating that there is no difference in the performance

of machine learning models when adding stock characteristics to the bond characteristics in

forecasting bond returns. Finally, Panel C of Fig. 4 plots the monthly R2
OS using both stock

and bond characteristics and shows similar results to those in Panel A using bond charac-
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teristics only. Overall, we conclude that although stock characteristics produce significant

explanatory power for bond returns when used alone, their incremental improvement relative

to bond characteristics is small.

5 Do Stock or Bond Characteristics Predict Future S-

tock Returns?

? find that machine learning offers an improved description of expected return relative to

traditional methods in forecasting future stock returns. Motivated by ?, in this section, we

examine the predictive performance of the 94 stock and 41 bond characteristics, respectively,

in predicting future stock returns. Consistent with the findings in ?, we show that machine

learning methods provide strong forecasting power using the stock characteristics. Moreover,

we uncover new evidence that when used alone in the machine learning models, corporate bond

characteristics perform well in predicting future stock returns. However, when comparing the

marginal improvement in predictive performance, we find that bond characteristics do not

offer additional explanatory power above and beyond stock characteristics.

5.1 Out-of-Sample Performance

Table 7 presents the monthly out-of-sample R2
OS for the entire pooled sample of stocks using

all 94 stock characteristics and 41 bond characteristics, respectively, as the covariates. Fol-

lowing ?, we obtain monthly common equity returns from CRSP for all firms listed in the

NYSE, AMEX, and NASDAQ. We restrain our sample to begin from July 2002 and ends in

December 2017 because we focus on the common periods when our bond sample construction

and bond characteristics become available. The first row of Table 7 shows that the OLS

model with all 94 stock characteristics produces an R2
OS of −3.83%, indicating that the model

fails to deliver statistically significant out-of-sample forecasting power for the expected stock

returns.12 Consistent with the findings in ?, machine learning methods significantly improve

12This result is consistent with ?, who finds an out-of-sample R-squared of −3.46 for the OLS model over
an extended sample period using similar stock characteristics from March 1957 to December 2016.
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the out-of-sample forecasting power for the expected stock returns, with monthly R2
OS ranging

from 0.08% to 0.60%. Specifically, forecast combination method (Combination) and neutral

network models (FFN and LSTM) deliver the highest R2
OS of 0.60%, 0.56%, and 0.54%, re-

spectively. Regression trees (RF) and dimension reduction models (PCA and PLS) deliver

the second largest improvement of the R2
OS to 0.49%, 0.35% and 0.44%, respectively, relative

to the OLS model. The penalized methods (LASSO, Ridge, and ENet) generate the third

largest improvement over the OLS model, with R2
OS in the range of 0.08% and 0.12%.

The second row of Table 7 uses all 41 bond characteristics as the covariates, and shows

that machine learning methods using corporate bond characteristics are able to generate

significantly positive R2
OS ranging from 0.11% to 0.44% per month. Fig. 7 plots the monthly

R2
OS (y-axis) for all models using bond and stock characteristics, respectively, and shows that

corporate bond characteristics deliver similar R2
OS to those of stock characteristics.

To what extent do bond characteristics provide incremental predictive power for future

stock returns, compared to using stock characteristics alone? To answer this question, we

investigate the joint predictive power of the 94 stock and 41 bond characteristics in forecasting

future stock returns in Table 8. Panel A of Table 8 shows that machine learning models

using the combined 135 characteristics deliver significantly positive R2
OS ranging from 0.23%

to 0.65%. However, as shown in Panel B, most of the Diebold-Mariano test statistics are

insignificant for the machine learning methods, which indicates that the column model (i.e.,

the combined 135 stock and bond characteristics) does not significantly outperform the row

model that uses only the 94 stock characteristics. Overall, Table 8 suggests that there is no

significant improvement in the predictive performance when adding bond characteristics to

the stock characteristics in forecasting stock returns.

6 Conclusion

Using a variety of machine learning methods, we provide a comprehensive study of the expect-

ed corporate bond returns using a large set of 94 stock characteristics and 41 bond character-

istics. Both equity and corporate bonds are contingent claims on firms but they also differ in
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several key features. Thus it is important to examine whether stock characteristics or bond

characteristics, individually or jointly, drive the expected corporate bond returns. Because of

the nonlinear payoffs of corporate bonds and the high correlation between many of the stock

and bond characteristics, machine learning approaches are well suited for such challenging

prediction problems by mitigating overfitting biases and uncovering complex patterns and

hidden relationship.

We find that traditional unconstrained linear models such as OLS perform poorly, whereas

machine learning methods substantially improve the out-of-sample forecasting power for the

expected corporate bond returns. In addition, the predictive power of machine learning models

extend to both investment-grade and non-investment-grade bonds. While stock characteristics

produce significant explanatory power for bond returns when used alone, their predictive power

is only half of that associated with using corporate bond characteristics, and their incremental

improvement relative to bond characteristics is small.

Finally, in addition to bond return predictability, we investigate whether the comprehensive

list of stock and bond characteristics, individually or jointly, predict future stock returns. We

find that when used alone as the predictive covariates, bond characteristics provide as strong

forecasting power for future stock returns as using stock characteristics alone. However, bond

characteristics do not offer additional explanatory above and beyond stock characteristics

when we combine both set of characteristics.
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Appendix: Corporate Bond Characteristics

The Appendix describes the comprehensive data library of the 41 corporate bond characteris-

tics we construct, which are motivated by the existing studies on the cross-section of corporate

bond returns literature. This broad set of bond characteristics can be largely classified to (i)

bond-level characteristics such as issuance size, age, credit rating, time-to-maturity, and du-

ration, (ii) proxies of corporate bond downside risk, (iii) proxies of bond-level illiquidity and

liquidity risk, (iv) proxies of systematic risk such as default and term betas and volatility

betas, and (v) past bond return characteristics such as bond momentum, reversal, and distri-

butional characteristics such as return volatility, skewness, and kurtosis. The list of corporate

bond characteristics is not an exhaustive analysis of all possible predictors of corporate bond

returns. Nonetheless, our list is designed to be representative of a broad set of corporate bond

characteristics motivated in the literature for their explanatory power for bond returns.

1. Credit rating (Rating). We collect bond-level rating information from Mergent FISD

historical ratings. All ratings are assigned a number to facilitate the analysis, for exam-

ple, 1 refers to a AAA rating, 2 refers to AA+, ..., and 21 refers to CCC. Investment-

grade bonds have ratings from 1 (AAA) to 10 (BBB−). Non-investment-grade bonds

have ratings above 10. A larger number indicates higher credit risk, or lower credit

quality. We determine a bond’s rating as the average of ratings provided by S&P and

Moody’s when both are available, or as the rating provided by one of the two rating

agencies when only one rating is available.

2. Time-to-maturity (MAT). The number of years to maturity.

3. Issuance size (Size). The natural logarithm of bond amount outstanding.

4. Age (Age). Bond age since the first issuance, in the number of years.

5. Duration (DUR).

6. Downside risk proxied by the 5% VaR (VaR5 ). Following ?, we measure downside

risk of corporate bonds using VaR, which determines how much the value of an asset

could decline over a given period of time with a given probability as a result of changes
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in market rates or prices. Our proxy for downside risk, 5% Value-at-Risk (VaR), is based

on the lower tail of the empirical return distribution, that is, the second lowest monthly

return observation over the past 36 months. We then multiply the original measure by

−1 for convenience of interpretation.13

7. Downside risk proxied by the 10% VaR (VaR10 ). This measure is defined as the

fourth lowest monthly return observation over the past 36 months. We then multiply

the original measure by −1 for convenience of interpretation.

8. Downside risk proxied by the 5% Expected Shortfall (ES5 ). An alternative

measure of downside risk, “expected shortfall,” is defined as the conditional expectation

of loss given that the loss is beyond the VaR level. In our empirical analyses, we use

the 5% expected shortfall (ES5) defined as the average of the two lowest monthly return

observations over the past 36 months (beyond the 5% VaR threshold).

9. Downside risk proxied by the 10% Expected Shortfall (ES10 ). An alternative

measure of downside risk, “expected shortfall,” is defined as the conditional expectation

of loss given that the loss is beyond the VaR level. In our empirical analyses, we use the

10% expected shortfall (ES10) defined as the average of the four lowest monthly return

observations over the past 36 months (beyond the 10% VaR threshold).

10. Illiquidity (ILLIQ). A bond-level illiquidity measure. We follow Bao, Pan, and Wang

(2011) to construct the measure, which aims to extract the transitory component from

bond price. Specifically, let ∆pitd = pitd − pitd−1 be the log price change for bond i on

day d of month t. Then, ILLIQ is defined as

ILLIQ = −Covt(∆pitd,∆pitd+1).

11. Roll’s daily measure of illiquidity (Roll). As an alternative measure of bond-level

13Note that the original maximum likely loss values are negative since they are obtained from the left tail
of the return distribution. After multiplying the original VaR measure by −1, a positive regression coefficient
and positive return/alpha spreads in portfolios are interpreted as the higher downside risk being related to
the higher cross-sectional bond returns.
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illiquidity using daily bond returns, the Roll (1984) measure is defined as,

Roll =

 2
√
−cov(rd, rd−1) if cov(rd, rd−1) < 0,

0 otherwise,

where rd is the corporate bond return on day d.

12. Roll’s intraday measure of illiquidity (TC Roll). Following Dick-Nielsen, Feld-

hutter, and Lando (2012), we employ an intraday version of the Roll (1984) estimator

for effective spreads,

TC Roll =

 2
√
−cov(ri, ri−1) if cov(ri, ri−1) < 0,

0 otherwise,

where ri = Pi−Pi−1

Pi−1
is the return of the ith trade.

13. High-low spread estimator(P HighLow). Following Corwin and Schultz (2012), we

use the ratio between the daily high and low prices on consecutive days to approximate

bid-ask spreads. With such motivation, their effective spread proxy is defined as

P HighLow =
2(eα − 1)

1 + eα
,

where

α =

√
2β −√β

3− 2
√

2
−
√

γ

3− 2
√

2
,

β =
1∑
j=0

(
ln

(
Ht+j

Lt+j

))2

,

γ =

(
ln

(
Ht,t+1

Lt,t+1

))2

.

Ht(Lt) is the highest (lowest) transaction price at day t, and Ht,t+1(Lt,t+1) is the highest

(lowest) price on two consecutive days t and t+ 1. Again, we take the mean of the daily

values in a month to get a monthly spread proxy for each bond.
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14. Illiquidity measure based on zero returns (P Zeros). Following Lesmond, Ogden,

and Trzcinka (1999), we use the proportion of zero return days as a measure of liquidity.

Lesmond, Ogden, and Trzcinka (1999) argue that zero volume days (hence zero return

days) are more likely to reflect lower liquidity. We compute their measure on a monthly

basis with T as the number of trading days in a month,

P Zeros =
# of zero return days

T
,

The number of zero return days comprises two parts, the sequential days with no price

change hence zero returns, and the days with zero trading volume.

15. Modified illiquidity measure based on zero returns (P FHT). Fong, Holden,

and Trzcinka (2017) propose a new bid-ask spread proxy based on the zeros measure in

Lesmond, Ogden, and Trzcinka (1999). In their framework, symmetric transaction costs

of S/2 leads to observed returns of

R =


R∗ + S

2
if R∗ < −S

2
,

0 if −S
2
< R∗ < S

2
,

R∗ − S
2

if S
2
< R∗,

where R∗ is the unobserved true value return, which they assume to be normally dis-

tributed with mean zero and variance σ2. Hence, they equate the theoretical probability

of a zero return with its empirical frequency, measured via P Zeros. Solving for the

spread S, they get

P FHT = S = 2 · σ · Φ−1

(
1 + P Zeros

2

)
where Φ−1 is the inverse of the cumulative standard normal distribution. We compute

a bond’s σ for each month and then calculate P FHT.

16. Amihud measure of illiquidity (Amihud). Following Amihud (2002), the measure

is motivated to capture the price impact and is defined as,
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Amihud =
1

N

N∑
d=1

|rd|
Qd

,

where N is the number of positive-volume days in a given month, rd the daily return,

and Qd the trading volume on day d, respectively.

17. An extended Roll’s measure (PI Roll). Goyenko, Holden, and Trzcinka (2009)

derive an extended transaction cost proxy measure, which for every transaction cost

proxy tcp and average daily dollar volume Q in the period under observation is defined

as

PI Roll =
Roll

Q
.

18. An extended FHT measure based on zero returns (PI FHT).

PI FHT =
P FHT

Q
.

where P FHT is the modified illiquidity measure based on zero returns (Fong, Holden,

and Trzcinka (2017)) and Q is the average daily dollar volume in the period under

observation.

19. An extended High-low spread estimator (PI HighLow).

PI HighLow =
P HighLow

Q
.

where PI HighLow is the high-low spread estimator following Corwin and Schultz (2012)

and Q is the average daily dollar volume in the period under observation.

20. Std.dev of the Amihud measure (Std Amihud). The standard deviation of the

daily Amihud measure within a month.

21. Lambda (PI Lambda). Hasbrouck (2009) proposes Lambda as a high-frequency price

impact measure for equities. PI Lambda (λ) is estimated in the regression,
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rτ = λ · sign(Qτ ) ·
√
|Qτ | + ετ,

where rτ is the stock’s return and Qτ is the signed traded dollar volume within the five

minute period τ . Following Hasbrouck (2009) and Schestag et al. (2016), we take into

account the effects of transaction costs on small trades versus large trades (Edwards,

Harris, and Piwowar (2007)) and run the adjusted regression,

ri = α ·Di + λ ·Di ·
√
Qi + εi,

where λ is estimated in the equation above excluding all overnight returns and Di is an

indicator variable of trades defined as the following,

Di =


1 if trade i is a buy,

0 if trade i is an interdealer trade,

−1 if trade i is a sell.

22. Difference of average bid and ask prices (AvgBidAsk). Following Hong and War-

ga (2000) and Chakravarty and Sarkar (2003), we use the difference between the average

customer buy and the average customer sell price on each day to quantify transaction

costs:

AvgBidAsk =
PBuy
t − P Sell

t

0.5 · (PBuy
t + P Sell

t )

where P
Buy/Sell
t is the average price of all customer buy/sell trades on day t. We calculate

AvgBidAsk for each day on which there is at least one buy and one sell trade and use

the monthly mean as a monthly transaction cost measure.

23. Interquartile range (TC IQR). Han and Zhou (2007) and Pu (2009) use the in-

terquartile range of trade prices as a bid-ask spread estimator. They divide the differ-

ence between the 75th percentile P 75th
t and the 25th percentile P 25th

t of intraday trade
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prices on day t by the average trade price Pt of that day:

TC IQR =
P 75th
t − P 25th

t

Pt
,

We calculate IQR for each day that has at least three observations and define the monthly

measure as the mean of the daily measures.

24. Round-trip transaction costs (RoundTrip). Following Feldhutter (2012), we ag-

gregate all trades per bond with the same volumes that occur within a 15-minute time

window to a round-trip transaction. We then compute the estimator for round-trip

transaction costs as the doubled difference between the lowest and highest trade price

for each round-trip transaction. To obtain a relative spread proxy, we divide the round-

trip transaction cost estimator by the mean of the maximum and the minimum price.

A bond’s monthly round-trip measure is then obtained by averaging over all round-trip

trades in a month.

25. Pastor and Stambaugh’s liquidity measure (GammaPS, γPS). Pastor and Stam-

baugh (2003) develop a measure for price impact based on price reversals for the equity

market. It is given by the estimator for γ in the following regression:

ret+1 = θ + ψ · rt + γ · sign(ret ) ·Qt + εt, (25)

where ret is the security’e excess return over a market index return, rt is the security’s

return and Qt is the trading volume at day t. For corporate bond market index, we use

Merrill Lynch aggregate corproate bond index. γ should be negative and a larger price

impact leads to a larger absolute value. As liquidity measures generally assign larger

(positive) values to more illiquid bonds, we define γPS = −γ expect it to be positively

correlated with the other liquidity measures.

26. Bond market beta (βBond). We estimate the bond market beta, βBond, for each bond

from the time-series regressions of individual bond excess returns on the bond market

excess returns (MKTBond) using a 36-month rolling window. We compute the bond
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market excess return (MKTBond) as the value-weighted average returns of all corporate

bonds in our sample minus the one-month Treasury-bill rate.14

27. Default beta (βDEF ). We estimate the default beta for each bond from the time-

series regressions of individual bond excess returns on the bond market excess returns

(MKTBond) and the default factor using a 36-month rolling window. Following Fama

and French (1993), the default factor (DEF) is defined as the difference between the

return on a market portfolio of long-term corporate bonds (the composite portfolio on

the corporate bond module of Ibbotson Associates) and the long-term government bond

return.

28. Term beta (βTERM). We estimate the default beta for each bond from the time-

series regressions of individual bond excess returns on the bond market excess returns

(MKTBond) and the term factor using a 36-month rolling window. Following Fama

and French (1993), the term factor (TERM) is defined as the difference between the

monthly long-term government bond return (from Ibbotson Associates) and the one-

month Treasury bill rate.

29. Illiquidity beta (βLWW ). Following Lin, Wang, and Wu (2011), it is estimated as the

exposure to the bond illiquidity factor, which is defined as the average return difference

between the high liquidity beta portfolio (decile 10) and the low liquidity beta portfolio

(decile 1).

30. Downside risk beta (βDRF ). Following ?, for each bond and each month in our sample,

we estimate the factor beta from the monthly rolling regressions of excess bond returns

on the downside risk factor (DRF) over a 36-month fixed window after controlling for

the bond market factor (MKTBond).

31. Credit risk beta (βCRF ). Following ?, for each bond and each month in our sample,

we estimate the factor beta from the monthly rolling regressions of excess bond returns

14We also consider alternative bond market proxies such as the Barclays Aggregate Bond Index and Merrill
Lynch Bond Index. The results from these alternative bond market factors turn out to be similar to those
reported in our tables.
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on the credit risk factor (CRF) over a 36-month fixed window after controlling for the

bond market factor (MKTBond).

32. Illiquidity risk beta (βLRF ). Following ?, for each bond and each month in our

sample, we estimate the factor beta from the monthly rolling regressions of excess bond

returns on the liquidity risk factor (LRF) over a 36-month fixed window after controlling

for the bond market factor (MKTBond).

33. Volatility beta (βV IX). Following Chung, Wang, and Wu (2018), we estimate the

following bond-level regression

Ri,t = αi+β1,iMKTt+β2,iSMBt+β3,iHMLt+β4,iDEFt+β5,iTERMt+β6,i∆V IXt+εi,t,

where Ri,t is the excess return of bond i in month t, and MKTt, SMBt, HMLt, DEFt,

TERMt, and ∆V IXt denote the aggregate corporate bond market, the size factor, the

book-to-market factor, the default factor, the term factor, and the market volatility risk

factor, respectively.

34. Short-term reversal (REV ). The bond return in previous month.

35. Six-month momentum (MOM6 ). Following Jostova et al. (2013), it is defined as

the cumulative bond returns over months from t−7 to t−2 (formation period), skipping

the short-term reversal month.

36. Twelve-month momentum (MOM12 ). It is defined as the cumulative bond returns

over months from t − 12 to t − 2 (formation period), skipping the short-term reversal

month.

37. Volatility (VOL). Following Bai, Bali, and Wen (2016), it is estimated using a 36-

month rolling window for each bond in our sample

V OLi,t =
1

n− 1

n∑
t=1

(Ri,t −Ri)
2.
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38. Skewness (SKEW ). Following Bai, Bali, and Wen (2016), it is estimated using a

36-month rolling window for each bond in our sample

SKEWi,t =
1

n

n∑
t=1

(
Ri,t −Ri

σi,t

)3

.

39. Kurtosis (KURT). Following Bai, Bali, and Wen (2016), it is estimated using a 36-

month rolling window for each bond in our sample

KURTi,t =
1

n

n∑
t=1

(
Ri,t −Ri

σi,t

)4

− 3.

40. Co-skewness (COSKEW ). Harvey and Siddique (2000), Mitton and Vorkink (2007),

and Boyer, Mitton, and Vorkink (2010) provide empirical support for the three-moment

asset pricing models that stocks with high co-skewness, high idiosyncratic skewness,

and high expected skewness have low subsequent returns. Following the aforementioned

studies, we decompose total skewness into two components; systematic skewness and

idiosyncratic skewness, which are estimated based on the following time-series regression

for each bond using a 36-month rolling window:

Ri,t = αi + βi ·Rm,t + γi ·R2
m,t + εi,t.

where Ri,t is the excess return on bond i, Rm,t is the excess return on the bond market

portfolio, γi is the systematic skewness (co-skewness) of bond i.

41. Idiosyncratic skewness (ISKEW ). The idiosyncratic skewness (ISKEW ) of bond i

is defined as the skewness of the residuals (εi,t) in co-skewness regression equation.
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Table 1 Descriptive statistics

Panel A reports the number of bond-month observations, the cross-sectional mean, median, standard deviation and monthly return per-
centiles of corporate bonds, and bond characteristics including credit rating, time-to-maturity (Maturity, year), amount outstanding (Size,
$ million), duration, downside risk (5% Value-at-Risk, VaR), illiquidity (ILLIQ), and the CAPM beta based on the corporate bond market
index, βBond. Ratings are in conventional numerical scores, where 1 refers to an AAA rating and 21 refers to a C rating. Higher numerical
score means higher credit risk. Numerical ratings of 10 or below (BBB- or better) are considered investment grade, and ratings of 11 or
higher (BB+ or worse) are labeled high yield. Downside risk is the 5% Value-at-Risk (VaR) of corporate bond return, defined as the second
lowest monthly return observation over the past 36 months. The original VaR measure is multiplied by -1 so that a higher VaR indicates
higher downside risk. Bond illiquidity is computed as the autocovariance of the daily price changes within each month, multiplied by -1.
βBond is the corporate bond exposure to the excess corporate bond market return, constructed using the Merrill Lynch U.S. Aggregate Bond
Index. The betas are estimated for each bond from the time-series regressions of bond excess returns on the excess bond market return
using a 36-month rolling window estimation. Panel B reports the time-series average of the cross-sectional correlations. The sample period
is from July 2002 to December 2017.

Panel A: Cross-sectional statistics over the sample period of July 2002 – December 2017

Percentiles

N Mean Median SD 1st 5th 25th 75th 95th 99th

Bond return (%) 1,197,702 0.79 0.50 5.90 -9.17 -4.19 -0.73 1.91 6.37 14.06
Rating 1,197,702 8.36 7.77 3.95 1.60 2.38 5.62 10.38 16.12 18.97
Time to maturity (maturity, year) 1,197,702 9.83 6.68 9.20 1.16 1.60 3.70 13.36 26.92 32.36
Amount out (size, $million) 1,197,702 442.53 300.24 532.44 4.21 17.13 109.03 562.14 1391.03 2570.22
Duration (DUR) 810,064 6.00 5.00 3.82 0.99 1.45 3.11 7.82 13.62 14.98
Downside risk (5% VaR) 629,375 5.66 3.96 5.63 0.69 1.14 2.39 6.74 16.20 28.85
Illiquidity (IILIQ) 986,377 2.04 0.43 5.03 -1.11 -0.21 0.07 1.88 9.56 23.01
Bond market beta (βBond) 634,809 1.02 0.84 0.87 -0.45 0.07 0.48 1.34 2.67 3.89

Panel B: Average cross-sectional correlations

Rating Maturity Size DUR VaR ILLIQ βBond

Rating 1 -0.13 -0.04 -0.19 0.46 0.13 0.08
Maturity 1 -0.04 0.89 0.17 0.11 0.35
Size 1 -0.02 -0.10 -0.15 0.07
DUR 1 0.25 0.11 0.49
VaR5 1 0.32 0.38
ILLIQ 1 0.09
βBond 1
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Table 2 Do corporate bond characteristics predict corporate bond returns?

This table reports monthly out-of-sample R-squared (R2
OS , in percentage) for the entire panel of corporate bonds using the 41 bond

characteristics. The models include OLS with all bond characteristics (OLS), principal component analysis (PCA), partial least square
(PLS), LASSO, ridge regression (Ridge), elastic net (ENet), random forest (RF), feedforward neural network (FFN), long short-term
memory neural network (LSTM), and forecast combination (Combination). The R2

OS pools prediction errors across firms and over time into
a grand panel-level assessment of each model and is defined as,

R2
OS = 1−

∑
(i,t)∈T3 (ri,t+1 − r̂i,t+1)2∑

(i,t)∈T3 r
2
i,t+1

p-values associated with R2
OS are reported using one-sided test. The full sample covers the periods from July 2002 to December 2017 and

is divided into three disjoint time periods i) the “training” subsample (the first three years, T1) to estimate the model, ii) the “validation”
subsample (the following two years, T2) to tune the hyperparameters, and iii) the “test” subsample (the rest of the sample, T3) used to
evaluate a model’s predictive performance. All of the R2

OS associated with machine learning models from column (2) to column (10) are
statistically significant with p-values less than 1%.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

OLS PCA PLS LASSO Rdige ENet RF FFN LSTM Combination

All bonds −6.76 3.26 3.13 2.45 2.77 2.90 3.88 4.40 3.82 4.05

Investment-grade bonds −5.23 3.84 3.74 3.15 3.54 3.62 4.23 4.81 4.12 4.63

Non-investment-grade bonds −12.38 1.43 1.25 0.03 0.01 0.04 2.43 2.94 2.81 2.10
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Table 3 Comparison of monthly out-of-sample prediction using Diebold-Mariano
tests

This table reports pairwise Diebold-Mariano test statistics comparing the out-of-sample bond-level
prediction performance (R2

OS) among the ten models used in Table 2. Positive numbers indicate the
column model outperforms the row model. Numbers in bold denote statistical significance at the 5%
level or better.

OLS PCA PLS LASSO Ridge ENet RF FFN LSTM Combination

OLS – 3.97 3.73 4.70 4.96 4.46 4.27 4.94 3.94 4.76

PCA – −0.59 −0.75 −0.36 −0.40 0.63 −0.33 −0.08 0.96

PLS – −0.51 −0.17 −0.18 0.70 −0.18 0.06 1.01

LASSO – 1.98 1.00 1.44 0.52 0.66 3.26

Ridge – 0.00 1.02 −0.15 0.26 2.21

ENet – 1.30 −0.14 0.36 4.27

RF – −0.99 −0.98 −0.04

FFN – 0.36 1.56

LSTM – 1.09

Combination –
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Table 4 Performance of machine learning bond portfolios using corporate bond characteristics

This table reports the monthly performance of equal-weighted decile portfolios sorted on out-of-sample machine learning return forecasts
using the 41 bond characteristics (i.e., r̂i,t+1 where (i, t) ∈ T3, the test subsample). At the end of each month, we calculate one-month-ahead
out-of-sample bond return predictions for each method. We then sort bonds into deciles based on each model’s forecasts and construct the
equal-weighted portfolio based on the out-of-sample forecasts. “Low” corresponds to the portfolio with the lowest expected return (decile
1), “High” corresponds to the portfolio with the highest expected return (decile 10), and “High − Low” corresponds to the long short
portfolio that buys the highest expected return bonds (decile 10) and sells the lowest (decile 1). The returns are in monthly percentage and
Newey-West t-statistics are reported in the last column.

Panel A: All bonds

Low 2 3 4 5 6 7 8 9 High High−Low t-stat

OLS 1.07 0.80 0.86 0.98 0.98 1.16 1.11 0.81 1.35 1.54 0.47 2.34
PCA 0.64 0.61 0.59 0.62 0.76 0.82 0.85 0.88 0.93 1.32 0.68 3.97
PLS 0.75 0.59 0.61 0.59 0.69 0.78 0.81 0.86 0.92 1.33 0.58 4.23
LASSO 0.78 0.76 0.67 0.58 0.63 0.62 0.67 0.74 0.91 1.37 0.59 2.75
Ridge 0.39 0.42 0.41 0.38 0.43 0.52 0.55 0.60 0.75 1.11 0.72 3.05
ENet 0.57 0.46 0.44 0.39 0.43 0.48 0.51 0.66 0.74 1.06 0.49 4.03
RF 0.62 0.72 0.72 0.60 0.68 0.70 0.68 0.73 0.91 1.48 0.85 3.23
FFN 0.45 0.53 0.56 0.53 0.65 0.75 0.85 0.94 1.11 1.42 0.98 3.64
LSTM 0.62 0.52 0.50 0.52 0.56 0.62 0.67 0.79 0.90 1.21 0.58 2.78
Combination 0.27 0.41 0.50 0.55 0.62 0.66 0.74 0.84 1.00 1.47 1.20 4.77

Panel B: Investment-grade bonds

Low 2 3 4 5 6 7 8 9 High High−Low t-stat

OLS 1.04 0.78 0.86 0.98 1.07 1.12 1.10 0.93 1.33 1.54 0.50 2.42
PCA 0.65 0.63 0.59 0.62 0.75 0.80 0.85 0.90 0.95 1.33 0.68 3.92
PLS 0.76 0.62 0.60 0.59 0.68 0.77 0.82 0.88 0.92 1.35 0.59 4.30
LASSO 0.78 0.81 0.69 0.58 0.61 0.60 0.68 0.74 0.92 1.40 0.63 3.90
Ridge 0.40 0.44 0.41 0.38 0.42 0.50 0.55 0.61 0.77 1.14 0.74 3.01
ENet 0.59 0.44 0.45 0.38 0.43 0.46 0.50 0.68 0.75 1.08 0.49 4.14
RF 0.62 0.78 0.72 0.59 0.65 0.69 0.67 0.73 0.92 1.51 0.89 3.28
FFN 0.42 0.56 0.57 0.52 0.63 0.74 0.85 0.95 1.15 1.45 1.03 3.21
LSTM 0.62 0.52 0.50 0.52 0.56 0.62 0.67 0.79 0.90 1.21 0.58 4.00
Combination 0.28 0.42 0.51 0.54 0.61 0.67 0.72 0.88 0.98 1.48 1.20 4.60
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Table 4 (Continued)

Panel C: Non-investment-grade bonds

Low 2 3 4 5 6 7 8 9 High High−Low t-stat

OLS 1.40 0.89 0.89 0.85 0.76 1.50 0.96 0.64 1.18 1.51 0.11 2.46
PCA 0.68 0.47 0.62 0.53 0.71 0.84 0.76 0.77 0.75 1.31 0.63 2.80
PLS 0.83 0.53 0.64 0.61 0.54 0.71 0.74 0.72 0.76 1.27 0.45 3.00
LASSO 0.68 0.61 0.60 0.56 0.50 0.63 0.54 0.68 0.84 1.44 0.76 2.27
Ridge 0.46 0.28 0.39 0.32 0.20 0.51 0.37 0.51 0.59 1.04 0.59 2.63
ENet 0.63 0.33 0.41 0.30 0.28 0.39 0.36 0.63 0.56 0.89 0.25 2.77
RF 0.63 0.71 0.58 0.59 0.47 0.61 0.64 0.77 0.86 1.50 0.87 2.71
FFN 0.50 0.50 0.51 0.44 0.54 0.65 0.79 0.99 1.01 1.28 0.78 2.78
LSTM 0.76 0.59 0.55 0.52 0.55 0.61 0.72 0.82 0.88 1.21 0.46 2.38
Combination 0.36 0.48 0.56 0.58 0.62 0.61 0.77 0.75 1.02 1.49 1.13 3.23
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Table 5 Do stock characteristics predict corporate bond returns?

This table reports monthly out-of-sample R-squared (R2
OS , in percentage) for the entire panel of corporate bonds using the 94 stock

characteristics. The models include OLS with all variables (OLS), principal component analysis (PCA), partial least square (PLS), LASSO,
Ridge regression (Ridge), Elastic Net (ENet), Random Forest (RF), feed forward neural network (FFN), long short-term memory neural
network (LSTM), and forecast combination (Combination). The R2

OS pools prediction errors across firms and over time into a grand
panel-level assessment of each model and is defined as,

R2
OS = 1−

∑
(i,t)∈T3 (ri,t+1 − r̂i,t+1)2∑

(i,t)∈T3 r
2
i,t+1

The full sample covers the periods from July 2002 to December 2017 and is divided into three disjoint time periods i) the “training” subsample
(the first three years, T1) to estimate the model, ii) the “validation” subsample (the following two years, T2) to tune the hyperparameters,
and iii) the “test” subsample (the rest of the sample, T3) used to evaluate a model’s predictive performance. All of the R2

OS associated with
machine learning models from column (2) to column (10) are statistically significant with p-values less than 1%.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

OLS PCA PLS LASSO Ridge ENet RF FFN LSTM Combination

All bonds −2.35 2.28 1.78 2.45 2.55 2.46 0.86 0.34 1.61 2.75

Investment-grade bonds −2.34 2.21 1.54 2.33 2.43 2.35 0.60 0.22 1.41 2.61

Non-investment-grade bonds −2.35 2.58 2.56 2.83 2.94 2.83 1.81 0.36 2.23 3.22
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Table 6 Do stock characteristics improve the predictive power of bond characteristics for bond returns?

Panel A of this table reports monthly out-of-sample R-squared (R2
OS , in percentage) for the entire panel of corporate bonds combining

all bond characteristics and stock characteristics. The models include OLS with all variables (OLS), principal component analysis (PCA),
partial least square (PLS), LASSO, Ridge regression (Ridge), Elastic Net (ENet), Random Forest (RF), feedforward neural network (FFN),
long short-term memory neural network (LSTM), and forecast combination (Combination). The R2

OS pools prediction errors across firms
and over time into a grand panel-level assessment of each model and is defined as,

R2
OS = 1−

∑
(i,t)∈T3 (ri,t+1 − r̂i,t+1)2∑

(i,t)∈T3 r
2
i,t+1

The full sample covers the periods from July 2002 to December 2017 and is divided into three disjoint time periods i) the “training” subsample
(the first three years, T1) to estimate the model, ii) the “validation” subsample (the following two years, T2) to tune the hyperparameters,
and iii) the “test” subsample (the rest of the sample, T3) used to evaluate a model’s predictive performance. All of the R2

OS associated
with machine learning models in Panel A from column (2) to column (10) are statistically significant with p-values less than 1%. Panel B
reports the Diebold-Mariano test statistics comparing the differences in R2

OS between using bond characteristics only and using both bond
and stock characteristics.

Panel A: Out-of-sample R-squared (R2
OS) combining both bond and stock characteristics

OLS PCA PLS LASSO Ridge ENet RF FFN LSTM Combination

All bonds −3.72 3.14 3.28 2.91 3.15 2.94 2.68 1.69 2.74 3.67

Investment-grade bonds −3.71 3.48 3.60 3.16 3.40 3.18 2.92 2.00 2.88 3.93

Non-investment-grade bonds −3.73 2.23 2.37 2.33 2.60 2.38 2.12 0.93 2.50 3.05

Panel B: Comparing R2
OS using Diebold-Mariano test statistics

Combining both bond and stock characteristics

PCA PLS LASSO RIDGE ENET RF FFN LSTM Combination

Bond characteristics only −0.61 0.16 0.66 −0.03 −0.97 −1.05 −0.18 −0.23 −0.43

p-value 0.27 0.44 0.26 0.49 0.17 0.15 0.43 0.41 0.33
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Table 7 Do stock or corporate bond characteristics predict future stock returns?

This table reports monthly out-of-sample R-squared (R2
OS , in percentage) for the entire panel of stocks using the 94 stock characteristics

and 41 bond characteristics. The models include OLS with all variables (OLS), principal component analysis (PCA), partial least square
(PLS), LASSO, Ridge regression (Ridge), Elastic Net (ENet), Random Forest (RF), feedforward neural network (FFN), long short-term
memory neural network (LSTM), and forecast combination (Combination). The R2

OS pools prediction errors across firms and over time into
a grand panel-level assessment of each model and is defined as,

R2
OS = 1−

∑
(i,t)∈T3 (ri,t+1 − r̂i,t+1)2∑

(i,t)∈T3 r
2
i,t+1

The full sample covers the periods from July 2002 to December 2017 and is divided into three disjoint time periods i) the “training” subsample
(the first three years, T1) to estimate the model, ii) the “validation” subsample (the following two years, T2) to tune the hyperparameters,
and iii) the “test” subsample (the rest of the sample, T3) used to evaluate a model’s predictive performance. All of the R2

OS associated with
machine learning models from column (2) to column (10) are statistically significant with p-values less than 1%.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

OLS PCA PLS LASSO Ridge ENet RF FFN LSTM Combination

Stock characteristics only −3.83 0.35 0.44 0.12 0.08 0.12 0.49 0.54 0.56 0.60

Bond Characteristics only −3.59 0.14 0.29 0.13 0.11 0.14 0.34 0.30 0.36 0.44
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Table 8 Do bond characteristics improve the predictive power of stock characteristics for future stock returns?

Panel A of this table reports monthly out-of-sample R-squared (R2
OS , in percentage) for the entire panel of stocks combining all 94 stock

characteristics and 41 bond characteristics. The models include OLS with all variables (OLS), principal component analysis (PCA), partial
least square (PLS), LASSO, Ridge regression (Ridge), Elastic Net (ENet), Random Forest (RF), feedforward neural network (FFN), long
short-term memory neural network (LSTM), and forecast combination (Combination). The R2

OS pools prediction errors across firms and
over time into a grand panel-level assessment of each model and is defined as,

R2
OS = 1−

∑
(i,t)∈T3 (ri,t+1 − r̂i,t+1)2∑

(i,t)∈T3 r
2
i,t+1

The full sample covers the periods from July 2002 to December 2017 and is divided into three disjoint time periods i) the “training” subsample
(the first three years, T1) to estimate the model, ii) the “validation” subsample (the following two years, T2) to tune the hyperparameters,
and iii) the “test” subsample (the rest of the sample, T3) used to evaluate a model’s predictive performance. All of the R2

OS associated
with machine learning models in Panel A from column (2) to column (10) are statistically significant with p-values less than 1%. Panel B
reports the Diebold-Mariano test statistics comparing the differences in R2

OS between using stock characteristics only and using both stock
and bond characteristics.

Panel A: Out-of-sample R-squared (R2
OS) combining both stock and bond characteristics

OLS PCA PLS LASSO RIDGE ENET RF FFN LSTM Combination

Stock and bond characteristics combined −4.29 0.32 0.42 0.23 0.30 0.24 0.53 0.57 0.56 0.65

Panel B: Comparing R2
OS using Diebold-Mariano test statistics

Combining both stock and bond characteristics

PCA PLS LASSO Ridge ENet RF FFN LSTM Combination

Stock characteristics only −0.37 −0.27 0.77 2.50 0.79 1.39 0.28 1.32 0.63

p-value 0.36 0.39 0.22 0.01 0.22 0.08 0.39 0.35 0.27
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Figure 4. Monthly Out-of-Sample R2
OS of Corporate Bond Returns

Panel A: Monthly R2
OS Using Bond Characteristics Only

OLS PCA
PLS LASSO

Ridge
ENet

RF FFN LSTM
Combination

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

All bonds
Investment-grade bonds
Non-investment-grade bonds

Panel B: Monthly R2
OS Using Stock Characteristics Only
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Panel C: Monthly R2
OS Using Both Bond and Stock Characteristics
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This figure presents the monthly out-of-sample R-squared (R2
OS , in percentage) of corporate bond

returns using OLS, principal component analysis (PCA), partial least square (PLS), LASSO, ridge
regression (Ridge), elastic net (Enet), random forest (RF), feedforward neural network (FFN), long
short-term memory neural network (LSTM), and forecast combination (Combination). Panel A reports
R2
OS using only 41 bond characteristics and Panel B reports R2

OS using only 94 stock characteristics.
Figure reports the monthly R2

OS for all bonds, investment-grade, and non-investment-grade bonds.
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Figure 5. Variable importance by model for corporate bond return prediction
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This figure presents the variable importance for the top 10 most influential bond-level characteristics in each model for corporate bond
returns, using the 41 bond characteristics as the covariates. For each model, we calculate the reduction in R2 from setting all values of
a given predictor to zero within each training sample, and average these into a single importance measure for each predictor. Variable
importance is an average over all training samples.
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Figure 6. Characteristic importance for corporate bond return prediction
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This figure presents the overall rankings of bond-level characteristics in each model for corporate bond
return prediction. For each model of the nine machine learning methods, we calculate the reduction in
R2 from setting all values of a given predictor to zero within each training sample, and average these
into a single importance measure for each predictor. The importance of each characteristic for each
method is ranked and then summed into a single rank. Columns correspond to individual models, and
color gradients within each column indicate the most in influential (dark blue) to least in influential
(white) variables.
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Figure 7. Monthly Out-of-Sample R2
OS of Stock Returns
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This figure presents the monthly out-of-sample R-squared (R2
OS , in percentage) of stock returns us-

ing OLS, principal component analysis (PCA), partial least square (PLS), LASSO, ridge regression
(Ridge), elastic net (Enet), random forest (RF), feedforward neural network (FFN), long short-term
memory neural network (LSTM), and forecast combination (Combination). Figure reports the month-
ly R2

OS using 94 stock characteristics and 41 bond characteristics, respectively.
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